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hSTRACT

W correct choice of~tion and derivative recomwtionjlters
is paramount 10 obtig hig~y accurate renden-ngs. Mostjlter
choices are tiited to a set of commonly usedfich”ons, and the
vkdtion practitioner has sofono way to state hispr#erences

in a convenient fmhion Much work h been done towards the
daign and spec@cation of$ltem using frequency based methods.
Howeveq for vistition algorithms it is more natural to specify
a~lter in ~erms of the smoothness of the resulting reconstructed
@tion d the spd reconstruction erroz Hence, in thispape~
we present a methodology for designing ~lters based on spatial
smo$lhness and accuracy crheti Bti$rst state our design cn-te-
ti and then provide an ~ple of aflter &n-gn ~rcisc Bk ako
use rhJItem so designed for VOIW rendering of sampled &ta
sets and a ~nthetic lest~n-on Rk &numstrate that our ressdts
compare fmorably with titing methoh.

Keywor& Zntetpotion (G.1.1) Approtition (G.1-2) Quadra-
ture and Nwricd DI~erentiation (G.I.4) Picturdmage Genera-
tion @33) Recons=tion &45)

Other Ke~ords: Iblume Rendering, Filter Desig~ inte~oh-
tion detih’es

1.mODumON

The reconstmction of a function and its derivatives from a set of
given samples of that function is a fidarnenti operation in many
areas. Computer graphics, scientific visu-on, and image pr~
cessing are just a few examples. k ~ these arm, a set of samples
of nn unknown function is usufly W we know of that function.
Hence, the rmnstruction of the tiction between sample points is

rather arbitrary, and one cannot t~ about an ided reconstruction
function. The notion of ideal reconstruction is based on the
assumption, that a given function is a member of a certain func-
tional space, e.g. the L2 space or the bandlimited function space.
This functional space (and therefore the ideal reconstruction :.
method) is usually determined by the particular application. In
visufization, and in other fields, we assure that the given function
belongs to the space of smooth functions d, where n is assinteger. ,,

Avery impo~t and often studid space in the class of rdl smooth
func~ond spat=, is the space of bandimited fictions (a subclass ,,
of C ). They are often studied in the frequency domain using a
sign~ processing approach. Nthough these methods are capable
of mntrotig global errors such as blurring and tilasing, no local
spatial assessment of their accuracy can be conducted directly. It
turns out that the idd recons~ction filters for the space of band-
hrnited functions are impractical to use. Hence research in this area
has focused on finding efficient filters that approximate the iderd
titer [l][4][7][9][10][14][15].

Another body of work has concentrated on minimizing the local
spatial error for design and evahsation of filters [11][16][17][20].
The Iocd error was measured and minimized using a Taylor series
expansion. Since visual perception, judged by ringing, tiasing and
blurring, was of concern, the frequency behavior of the resulting
flter was discussed. h addition, spatird design gives an easy con-
trol over the size of the filter, and hence on the efficiency of the
restiting filter, a property frequency-based methods do not have.
However, it was found that the sole concern for numerical accu-
racy can lead to discontinuous filters, which can produce visual

,

artifacts that are easily detected [17]. The god of this paper is to
overcome this problem by introducing a smoothness requirement
into the Hter design proms.

M flter designs in the spatial domain have built filters according
to an accuracy criteria. In this paper we introduce, for the first
time, filter d~ign criteria for interpolation and derivative filters ,.

which yield functions with a minimal numerical error and still
maintain good spectral properties. The ordy assumption that we

1.

require of the original function (represented by the given samples) t
is that it is smooth and a member of the functional space d. We
rdso show how our design criteria relate to criteria in frequency
domain.

Our falter design is not ratrictd to cubic polynomial basis finc-
tions, but can generate filters of arbitrary smoothness and accu-
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racy. In tils paper, we desi=~ optimized piecewise polynomial
interpolation flters according to a set of smoothness and accuracy
requirements. These filters are drawn from the set of M piecewise
pol~momi~ flters, a more gened class of filters than the popdar
BC-spfies. Site our methods dso apply easfiy to any derivative
filter design, we fid optid piecewise polynomial gradient flters
as well. Our radts, which go beyond the de-facto s~dard of the
poptiar cubic BC-spfines introduced by hfitche~ and Netravti
[lq, are summarized in Table 1 and Table 2 Three tables provide
a guide to which filters shotid be usd in most applications. Fur-
thermore, we provide the practitioner with an easy and fast way to
d=ign filters that are specific to their applications by determining
an application ofiented set of smoothn~s and accuracy criteria

The outie of this paper is as fo~ow~ Section 2 sununties pre-
vious research in this fiel~ k Section 3, we introduce the design
criteria that we use in Section 4 to desi=mnew flters. k Section 5
we present some expenmenti rdts and in Section 6 we suggest
steps for furthering this r=earch. FmWy, in Smtion 7, we suuuua-
nze our findings.

2. mmous mum

~o of the more important and we~ studid reconstruction rdg~
nthms are interpolation and gradient =timatiom k volume render-
ing, we must be able to interpolate the function at arbitrary
locations to obtain the volume densities nded for arbitrary view-
ing. The gradient (the fit derivative of the function) is employed
in both volume classtication and shading [6][13]. If the gradient
estimation is done incorrectly, shading and classification W yield
misleading colors and opacities.

hlany researchers have shown that tie Sti titer is an idd inter-
polation titer for the space of bantimitd functions (a subclass of
Cm). b this space the Cost ~ter, which is the anrdytic dtivative
of the Stic flter, is an iderd derivative ~ter [1][7][19]. These ti-
ters completely cut off the frequencies above a certain Nyquist fre-
quency. Because of this discontinuity in the frequency domain,
those filters have irdinite suppofi in the spatial domain and there-
fore are impractid to use for digitrd signrds. Windowing the Sine
filter was introduced in order to smoo~y fimit this filter spatidy
[10][19]. QIbom [4] computed an approximation to a modified
Stic filter with a minimized ~ebychev error. Goss [9] extended
the id= of windowing from inte~olation filters to derivative fil-
ters. He used a Kaiser window to mitigate the adverse effwts of
the truncated idd derivative ~ter- btead of trying to fid a good
approximation to the ided filter for W frequency ranges, Dutta
Roy md Kumar’s filter design [7] can be easily adapted to find
good approximations for select frequency ranges.

A compmtive study by hfarschner and bbb [15] proposal the
use of different error metrics for various recons~ction artifacts of
interpolation filters. These error metrics operate in the frequency
domain and measure the smoothing, post-rdiasing, and overshoot
atibutes of a interpolation filtez This study showed that the win-
dowed Stic ~ter has tie b~t behavior.

h the spatial domain, Keys [11] analyzed a certain class of cubic
spties, ~so c~led carti splines, using a TayIor series expan-
sion. He showed tha~ within this class, the &truti-Rom spke is
optimal in the sense that it interpolates the original tiction with
the smtiest asymptotic spatird error. He rdso graphidy compared
the ~tm~-Rom spke with the iti interpolation titer, noticing

that it is suitable for practicrd applications in computer graphics.
Mtchell and Netrav~i [16] introduced a more general class of
cubic splines which we refer to as BC cubic splines or in short,
BC-splines. Cardinal cubic splines are a subclass of the BC-
spties. MtcheU and Netravdi conducted a study involving more
than 500 sample images, cltisi~ng the parameter space into dif-
ferent regions of dominating reconstruction artifacts such as blur-
ring, rin@ng, and anisotropy. They found, by using a Taylor series
expansion, that faltersfor which B + 2C = 1 are the most numeri-
dy accurate within the class of BC-spfines and have an error pro-
portional to the square of the sampting distance. They rdso found,
through their empirical studi=, that thwe filters, rdthough numeri-
tiy superior, are not rdways visu~y superior.

Recenfly, we have shown [17] that the derivative approximation
has a larger impact on the qurdity of the volume rendered image
than the interpolation operation and therefore d~erves a thorough
analysis. Unfortunately, not much work has been done in the spa-
tird d~ign of derivative filters. Bentum et ~. [1] use the Cardind
cubic sptines as a basis to constructing the derivative filter through
an analytic derivation of the interpolation filter. Although the
authors i~ustrate the effect of various parameters on these filters
via a number of frequency plots, they do not anrdyticdly compare
the different flters. We (in [17]) have developed tools for the spa-
tial analysis of both interpolation and derivative titers of arbitrruy
order. We used a Taylor series of the convolution sum in order to
come up with four evaluation criteria. These criteria include
asymptotic, as we~ as absolute, Iocd error effects of the filter on
the reconstructed function. We use these criteria in our current
paper as a way to control the numerical error of the filters that we
design. Using the methods developed in [17] we conducted a com-
parison of various derivative (normrd vector) reconstruction meth-
ods and classified them into four reconstruction schemw [18].

Since we wiH employ the restits of [17] throughout our paper, we
include a summery here

2.1 Taylor E~mion of the Convolution Sum

To reconstruct a continuous finctionflt) or its derivative ~(t) from
a set of sample pointsfik], we convolveflk] with a continuous fil-
ter kernel w. The titer w can be either an interpolation or a deriva-
tive filter. We denote the result of this operation by ~(t).
Formdy, this can be written as:

f(t) = ~ f[k] -W(;-k), (1)

where T is the sampling distance. Now we can expand
J[k] = f(k~ into a Taylor series of N+l terms about t. The
Taylor serim expansion at that point wotid bti

N (n) (N+ I)(gk)

f[k] = ~ ‘+ (kT–t) ‘-+f(N+~,, (~T_t) (N+l)
n=o -

where f(n)(t) is the n-th derivative off and ~~= [t,kn .

Substituting the Taylor series expansion into the convolution sum
of ~uation 1, leads to an dtemative representation for the recon-
structed vrdue at a point c

1%
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n=o

(2)

where zis chosen such that t = (i+z) T,with O<z< 1, and i is

an integer. It is noteworthy that the derived error coefficients u
ody depend on the offset ~ to the nearest sampkg poinL i.e., they
are periodic in the sarnpfing distance Z For further de~, please
refer to {17].

me characterization of the titering process in ~uation 2 imposes
four ~erent criteria for a good reconstmction scheme of the k-tb
derivative. ~~rst of W, we require a~ to be zero for fl n smfler
than k Secontiy we have to normtize by a; in order to recon-
struct tie actual derivative as opposed to some mtitiple of i~ Fur-
ther by determining the largest N, such that afi is zero, we can
determine the asymptotic error behavior of a Hter for a decraing
samp~mgdistance Z FinWy, the remainder term r gives us an indi-
cation of the absolute error of that filteL

~ls expansion of the convolution sum assumes that at least the
first N derivatives of the function~exis~ where N depends on our
emor anrdysis. Hence, we assume that the underlying function is a
member of the class of smooth functions CN. ~ls condition is
genetiy met in practice [2][1T[21].

Whenever we are trying to reconstruct a function from sample
points we are hoping that the reconstruction process performs well
and we don’t get mmy arn~acts. However our understanding of
such terms We gooJ recou=tin as weU as ti~afi during this
process is usu~ly hig~y dependent on the specific application.
hlost aFFfiutiomshare an attempt to recover the on~d sampled
function as accurately as possible. k order to mwure the accu-
racy of tie Frocess, one must have an idm about the type of origi-
nrd function from which the samples were rccoverd As we have
pointed out in Section 2-1, it is not restrictive to most applications
to assume that the original fiction is continuous to some degree n
and therefore belongs to the class of functions d. ~s is the ordy
assumption, that we rquire for OUTfilter design.

In addition of hoping for an accurate finction reconstruction,
almost fl appticati@nswfl require the reconstruction of a smooth
fiction. Since we assume a smooth original fiction, it is nati
to expect a smooth function as the retit oftbe reconstruction pro-
cas. A smooth reconstruction wi~ dso guarantm the disappear-
=ces of image artifacts in visutition and imaging applications.
Another application is ~ in which designers reconstmct sur-
faces from a set of sample points @ots) using basis functions that
are developd to yield surfs= of Cl, C2 or higher continuity. me
reason for smooth function reconstruction is that OUTvisual system
is capable of detecting and enhancing even smti discontinuhies in
images. For example, in F]g. 2b and Fig. 4b (see color plates) we

reconstructed a test function (introduced in [15]) and an ~ data
set with a filter that was designed solely by requiring high accu-
racy [17] and therefore yields very little absolute error. It, how-
ever, suffers from discontinuities, leading to a discontinuous
reconstructed functiom Consequently, we would Me to reconstruct
a finction, that is a member of the continuous function space d.

For practical applications, the efficiency of the recons~ction pro-
cws is of great importance as we~. h volume rendering, the effi-
ciency of a reconstruction titer, which is employed routinely many
times [1], is a source of geat concern. It is d=irable to use as few
sampla as possible in order to reconstruct the function at a new
location.

We conclude that for general filter design we have to answer three
question%

● What derivative of the original function do we want to recon-
struct?

● What accuracy do we require from the reconstruction process?

● What space @ shodd the reconstructed function belong to?

Commordy there is dso the question of how many filter weights
should the falterhave. We have eleganfly answered this question by
minimizing the number of weights and by designing the most effi-
cient titer tifi~ng the constraints of the design.

me first two questions can easily be expressed using the frame-
work developti in [lfl. Assuming that we want to reconstruct the
k-th derivative of the given digiti signrdfi we simply require that
ti error coefficients a: in Equation 2 be zero, where n c k. Fur-
ther, we require that the coefficient of the kth derivative be one.
Forrntiy, this can be expressed as:

Cotiition I:a~ = O ford n<kanda~ = 1.

me major gord of the design in spatial domain is numerical accu-
racy. We gain numerical accuracy by requiring the error coeffi-
cients a; beyond k to be zero. ~Is leads to what we cdl N-EF
titers (that is, Error Function of the ~h order) ([17]):

Codition2:a~ = O fortik<n<N+k-1.

It is no restriction to consider the filter w to be composed of ele-
ments Wb which are defined by

wk = wk(z) = W(7+ k) .

An example of this piecewise decomposition of the flter w is illu-
stratedin Fig. 1. Now it is easy to see that the first two conditions
yield an equation system in the utiowns Wb me solution of that
equation system wiU define a titer w, that Mfills Condition 1 and
2. Since this is a linear equation system, we can easily solve it
syrnboficdly by Gaussian elimination, which yields a solution for
the Wk ~s concludes the fist step of our function design, defin-
ing a class of filters, that guarantee an N-= accurate reconstmc-
tion of the Lfi derivative of the original function.

As we have pointed out ear~er, not every filter of this class yields a
continuous reconstructed function and therefore might lead to
nndairable artifacts. Hence, we desire the reconstructed finction

~. From Equation 1 it isto be part of a smooth function space C
clear that we n~ to require our filter w to be in this class. h order
to be a member of CM,a function w and its M derivatives must dl
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~GURE 1. A pi~ewise polynomial interpolation ~ter using

four filter weights Wk = Wk(z) = W(Z+ k). Essentirdly
the titer hasp parts. For both symmetric and anti-symmetr-
ic filters p is even.

be continuous everywhere, including every open interval (~ + 1)
for every integer ~ and&oat M the integer points k themselves.
Since the quation system of Cotitim 1 ~d 2 yields a piecewise
titer kernel, we can mathematicdy express the smoothness crite-
ria *

Cotiition 3: WL(7)~ & and w~) (1) = w:](O) for M k and

‘m) denotes the m-tb derivative of Wk.&m< h~, where Wk

After solving the equation system of Cotiitim 1 and 2and deter-
mining the smoothness of the desired filter, we have a new set of
criteria for our filter that needs to be me~ h order to design an
acti filter, we have to fid a solution that ~s ~ these condi-
tions. While it is not necessary to restrict oneseU to piecewise
polynomird ~ters. we have done so here. The reason for this is that
they are easy to use and implemen~ and are therefore very popdar.
Now Codtiom 1,2 and 3 translate to a Hnear equation system in
the coefficients of piecewise polynomials. The solution of this
equation system yields a class of polynornifls. These m be fur-
ther r~tricted by choosing efficient ~ters, i.e with the least num-
ber of filter weights and small degrees of polynomirds. This
concludes the Hter d~ign. Smnmarifig the filter design includes
the fo~owing step~

msOIVea hear equation system created by Conditions 1 and
2 in the pieces Wkof the ~ter w.

~~; moose a set of basis functions for the representation of
wA-

$teu * sOIVefor the coefficients of the basis functions, comider-
ing Condition 3 as we~ as the solution of Step 1.

Our d~ign criteria ~so have v~di~ in the frquency domaim It
can be shown that our accuracy criteria debed by speci~g the
error meficients a~, transbte to conditions on the frequency rep
resentation of the filter w at the DC value. a~ represents the DC
value itse~ nnd a~ the k-th derivative of the frequency spectra at
*at poin~ This is a very desirable condition and was sugg~ted as
a filter design criteria by Dutta Roy et d. [a, for detigoing maxi-
mrd Knear filters. Since it is impractid to use an idd reconstruc-
tion filter ~n the Cm sense), their idea was to design ~ters that

come very close to the idd filter in parts of the frequency spectra
and includes some important frquenciw. For gened applications,

:,

we would expect to have the most important frequencies around
the DC value.

Since the accuracy criteria ofly fixes the frequency domtin at a -
sin~e point, it is not enough to guarantee we~ behaved fiIters. Our ●

smoothness criterion in Condition 3 constructs filters w of the class
CM.That means they can be decomposed (using a Taylor series) ‘
into a polynomird of Mrh degree and a remainder term. Now, the
polynomird of Mfh degree translates into a function defined as
W-(M- 1) in frequency space [3]. ~ls guarantees a quick decay
of our reconstruction filter. The higher the smoothness condition, :-
the quicker the decay. This ensures that rdiasing effects of our
designed filter diminish with incraing M.

Having explained the general design process, we turn to demon-
strate it by ways of an example.

4. EmLE

ht us assume we want to construct a derivative filter. We expect
this derivative filter to be somewhat refiable in terms of accuracy, ‘.
so we choose a 2EF filter. Further, we aim for a C] continuous fil-
ter. That I=ds to thrm conditions to flfilk

1. derivative flte~

so(z) = O
(3) ,

al(z) = 1

2. numerical accuracy 2EF

a2(T) = o (4)

3. smoothn~s Cl:

WGC’ (5)

Here ak(~) are the error coefficients defined in ~uation 2 with a
positive offset z, O<z c 1. The filter to be constructed is w.
Decomposing our filter win piec= Wkas mentioned in Section 3,
we can write the three conditions above in terms of the filter
weights Wk = w~(~) = w(7 + k). We wi~ use the notation Wkand
w~z) interchangeably. Using the definition of the error coefficients
in Equation 2 w~ simptify the conditions of Equation 3 through
Equation 5 tm

1. derivative filtec

w_2+w_1+wo+w1 = o
(6)

T((2-7)w_2+ (l–T)w_l+ (-T)WO+ (–1–T)W,) = 1

2. numericrd accuracy 2EF

(2-T) 2w_2+ (1-T) 2w_1+ (-T)2WO+ (- I-7)2W1 = o (~

3. smoothness @ere W’n denotes the derivative of Wn)

146

——- —— ..,Y..,=



—.———— .— —- —-— -. . . . —.—.. —- —-. —.— ,. ...... — -,

Wk E c’ and

lv_2(o)= o w’_2(o)= o

~v_20)= W’_l(o) w’_2(l) = w’_l(o)
(8)

w_l(l) = W*(O) and w’_l(l) = W’o(o)
We(l) = w,(o) ~’o(l)= ~’l(o)
WI(l) = o W’I(l) = o

The choice of the number of filter weights Wk [which is tbe same
as the number of piecewise, non-zero parts of the function w) is
ratier filtrary. If we choose too many, the resrdting titer becomes
inefficient If we choose too few, the equation system might not
lead to a solution at W. Site we are trying to design mst%fficient
filters, we’d me to have as few as possible ~ter weights. Since, in
computer graphics, we are interested in anti-symrnetic derivative
filters {symmetric interpolation filters) and the weights w~z) are
defined over integer intervals, we always need an even number of
weights @ig. 1). Conditions 1 and 2 tieady impose three qua-
tions on the ~ter weights, thus we expect at least four weights to
be nuessary for our restiting filter.

me ~ation system in Equation 6 and Equation 7 has three equa-
tions in the four unknowns Wk Therefore it is under-determined
and leads to the fo~owing set of solutions (setting T to 1):

WI = w,

3
W. = –3W1 +%-5

w_l = 3wl–2~+2
(9)

1w_2 = –wl+T --
2

Any titer w whose flter weights ~ Equation 9 is guaranteed to
be a 2= fit derivative ~ter. The actnd filter can be constructed
using specific basis finctions for the Wkand insuring that our
smoothness andition ~uation 8) is tid An obvious choice
for the Cl continuous basis fiction wodd be polynornids, since
polynomials are a member of C-. Using our notation
Wk= Wk(T),we r*e:

where the coefficients C~ Bh Ak are unknown and remain to be
determind Here again the choice of a second order polynomial is
rather arbhmry. Ewe choose too high of a degree, we get an ineffi-
cient parameter depending solution. For too low of a polynoruird
degr% we might not get a solution, since not W constraints on the
Wkfrom ~uation 9 and Cotition 3 can be ~d Substi~ting
tis detition of the titer weights Wk into Equation 8 yields the
fo~owing condition on their coefficient

A-2=0 BO–2 =

C_2+ B_2 +A_2 = A_l 2C_2 + B_2 = B_l

C_l +B_l +A_l = A. and 2C_l +B_l = B.

CO+ BO+AO = Al 2C0 +Bo = B1

C1+B1+A1 = O 2C1+B1 = O

Substituting the polynomial definition of the filter weights Wk into
~uation 9 yields these conditions on their coefficient

co= -3C, BO= -3B,+1 A. = –3A1–;

C_l = 3C1 B_l = 3B1-2 A_l = 3A, +2

C_2 = -Cl B-2 = -Bl + 1 1
A-2 = –Al –~

-+

Further, rquiring anti-symmetric titers, yields the fo~owing con-
ditiom

w~_,(7) = ‘w_k(l-~,,

which ~slates to
+

ck-l = ‘c-k , ,

B~_l = 2C_k+B_k

Ak_l = C_k+B_k+A_k

in dl positive k. This leads to an equation system in the coeffi-
cients, which solved and substituted into Equation 9, leads to tie
foUowing filter weighk

This concludes our flter design of a Cl 2EF first derivative filter.

k the Appendix we fist W the interpolation and first derivative fil-
ters that we constructed using different accuracy and smoothness
criteria. Because of space constraint we have ody given the poly-
nornird coefficients in a matrix M. The flter weights are computd
by:

:1
w_3(7)

w_2(7)

w_l(~)

wo(~)

WI(7)

W2(7)

for a cubic filter with 6 weights. The size of M is adapted by the
size of the filter and the degree of the polynomial. Ml filters are
laid out in a table where the rows represent the smoothness criteria
and the mlurnns represent the accuracy criteria. We have looked at
lEF through 4EF filters and & through C3 smoothness criteria.
We dso incIuded titers that were constructed without Condition 3
- smoothness. That simply leads to discontinuous filters. Those fil-
ters might be of interest for applications that care about accuracy
ody, for example in cases where the resulting function is used for
measurement, rather than visual inspection. The advantage of
these filters is that they are sometimes faster while having ody lit-

14I
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tie (numeric~) error. We have ar=~ed in [17] that these filters
might even lead to reasonable images under certain conditions and
therefore represent an efficient dtemative that shotid not be dis-
cardd

The most generrd usable ~ters are probably ~, Cl and 2EF, 3EF
filters. For the interpolation filters we find that the most efficient
C1-3EF filter is the wefl known CatmW-Rom spfine, *O found by
others 10be the most accurate BC-spbe. It is *O noteworthy that
tils filter is not the best filter in the class of cubic BC-spties in
terms of smoothness. We dso found that the BC-~ter for which
B=] and C+ is a C2-2EF filter. Therefore this faltermight be pref-
erable over the Catmd-Rom spfie for some applications. ti order
to improve on the CatnmU-Rom filter in terms of accuracy one
requira 6 flter weights. In order to improve smoothness of the
reconstructed function while maintaining the same accuracy, one
has to choose at least a fourth degree polynomial. The best ~ter
with just 2 falterweights wordd be either a 2EF or a C3 continuous
filter.

For derivative ~ters, the filter C1-2EF is probably a good first
derivative ~ter. It is one of the best possible that ody requires 4
filter weights and is sti~ ody a Wadratic titer. b order to improve
on iq we wotid either have to go to 6 titer weights or to a fourth
degree polynomial It is ~so interesting to note, that this filter is
the analytic derivativeof the C2-2EF interpolation filter, which
was a BC-sphe with B=l and C+.

S. EmEmms

The images were rendered employing a simple ray-caster to find
the iso-surfaces. The volumes were sampled at an interval of 0.05
voxel lengths. At each srunpbg poinL the ray-caster fist appfied
an interpolation kernel (we used the CatrnW-Rom cubic spke) to
reconstmct the function at that poinL M the reconstructed value
was above a pre-set iso-vdue, the derivative filter was used to
compute tie 3D gradienL Shading was then performed using the
~aditiond Phong fighting model [S] with diffuse and specdar
reflections. The obtained color and opacity were composite with
the previous ray values, and the ray was terminated after the opac-
ity reached a value close to 1.0. Since both the interpolation and
the derivative kernel were separabl~ for M our titers, the fltenng
operations could be efficiently performed using a scheme sitiar
to the one given in [1] and [1S].

For our e.xpenments we used an analytic data set and an h~ data
seL The anrdytic data set is derivd from the same function as the
one used by Marschner and Lobb [15]. Since, due to spatial con-
straints, it is not possible to include the entire set of images that
can be obtained using ~ given ~ters, summarized in Table 1 and
Table 2, we have chosen the discontinuous and ~ lEF fil~rs as
Weu as the discontinuous and & 3EF ~ters. Fig- 2 @g. 2,4> in
color plates) shows the synthetic data set k order to better visua-
lizethe tiuence of the Hters we *o computed the an=tiar error
images. For each reconstructed norrnd we computd the acturd
norrnrd and r~orded their an=dar difference. The grey value of
255 was displayed for an an=tiar error of 15 degr-. The discon-
tinuous lEF filter is simply the wen known centrrd difference flter,
and the discontinuous 3EF ~ter is the flter that we have found to
be a ~ter yielding better accuracy in our previous work [la. Here
it is clwly visible, that flter design solely based on awuracy crite-
ria wi~ not lead to acceptable images. Adding a simple smoothness

14s

constrain which is reflected in the & filters, results in very accu-
rate images that are free of visible artifacts. It dso becomes very
clear, especi~y in the error images of Fig. 3, that the 3EF filter
W lead superior images in terms of numerical accuracy.

(a)

.-.-——
(Cj - “ (d)

~GM 3. E;or images of the Marschner Lobb data set ren-
derd using the foHowing derivative filter (a) discontinuous
lEF b) discontinuous 3EF (c) ~-lEF (d) @-3ER darker
coIors mean lesser error

The same behavior as for the amdytic data set can dso be observed
for the W data set in Fig. 4. This data set is a close up view of an
~ of a human brain- Here, we dso fixed the interpolation filter
to the Catmull-Rom filter and varied the derivative filter in the
same way as we did for the Marschner Lobb images.

Another application requiring smooth reconstruction filters is the
size preserving pattern mapping of Kufion et d. [12]. Here, the
problem is to continuously map a texture to a parametic surface or
impficit surface, including volumetric iso-surfaces, at a constant
density. h the past, otiy manurd mappings were able to perform
tils task, while this paper introduces an automatic method. The
authors use the curvature of a surface at a point in order to continu-
ously vary the scale of the mapped image. This curvature is
approximated using the derivative of the underlying function. A
C1 continuous filter is essential for the success of this method as it
ensures continuous mapping of texture on the surface. We used a
163 grid (a shrunken down version of the original 12S3 head) for
cdctiating the curvature. This means that the head is composed of
rectan@ar patches on which the norrnd derivative is calculated
by the same 43 grid sampl=. Fig. 5a uses the central difference fil-
ter, which gives a very poor estimation of the curvature, hence the
mapping of the density varies sharply between patches. Fig. 5b
uses a ~-2EF filter that generates a very constant density across
the head, but shows discontinuitim ~ong the patch tines. The filter
we designd for this application is the Cl continuous 2EF deriva-
tive flter of Table 2. Fig. 5Cshows an application of this filter and
we observe that dl previous problems no longer exist.

—. —-— ——.- .,.,. -.
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6. ~HR ~SWm

Since, in this paper, we restrictti ourselves to piecewise polyno-
mi~ filters, we wodd like to explore different basis functions.
EspeciMy using trigonometric basis fictions Mes~ ad costie,
we wotid ~ie to explore possible similarities to windowed Sine
and Cost titers. We hope that this mi@t improve the efficiency of
the filters, maintaining the same smoothness and accuracy w~e
using fewer titer weights.

Our accuracy criteria, as outilned here, have rdso been used to
speci~ and design flters in other domains, especitiy in wavelet-
bnsed mtitiresolution an~yses, by Daub~hies and others [5]. We
hope to explore the effect of our smoothness criteria rdso for defi-
ing new basis functions in the wavelet domain and to study its
effects on the wavelet transfom

In applications of computer ~~phics, especi~y scientific visua-
lization, the find image is not just Wuenced by the interpolation
and derivative metho~ but sometimes dso by a shading equation
and compositing operations. Therefore, it is necessary to amdyze
the ovefi error expressed in the L2 error nom We are working
on developing better tools to study this error. Once we are able to
charactefie the complete rendering pipetie, we might be able to
adaFt the reconstruction filters in a way to compensate for the
ovefi emor and to produce better images.

~. COnfUSiOnS

h MS work we have introduced design criteria for the desi=~ of
optimrd and smooth reconstruction filters. It was demonstrat~d,
contrary to previous betiefs, that it is not sufficient to base titer
desi~s just on accuracy criteri~ Rather, our design criteria are not
ody the accuracy of the reconstmcti function, but dso its charac-
terization as a function in the space Cqf of & hi-times continuous
derivable functions. We further demonstrated, by ways of an
exarnp]~ a Cl ~ flter, how such a flkr ~ be COnS~CM We

then providd a tabl~ tisting M optid interpolation and deriva-
tive filters that match smoothness and accuracy titeria of up to C3
continuous and 4EF, respectively. These tables may serve as a
guide on what titers shotid be usd for a ce- appficatiom The
filters fisted in these tables go much beyond the very poptiar class
of piecewise pol>norni~ titers, described in the past by Mitche~
nnd N’etravas BC-spbes [id. Furthermore, this paper gives the
practitioner an easy way to design specific ~ters to match their
specific zppfication, by determining a very application oriented set
of criteria- smootiess and amuracy.
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Viral Endoscopy - A voxel-based colon, colord using a texture of a human tissue.

Referen~ “Colotig TbxeI-Based Objects for Vii Endoscopy:’ Omer ShiboIe6 Daniel Cohen-Or, pp. 15–22.

Top:

Volume Rendering of a Bolt Using Wavelet Based Adaptive kterpolation

Reference ‘Wavelet Based Adaptive kterpolation For Volume Rendering; Ricardo S@chez, Marcelo Carvajd, pp.
127–134.

Rendered images of the sloth H volume with SOM-P~ segmentation.

Referen~ ‘fiobabtistic Segmentation of Volume Data for VIsu&tion Using SOM-PNN Classifier: Feng Ma, Wenping
wang, Wai Wan Tsana,o Zesheng Tmg, Shaowei ~% pp. 71–78.

The hypervolnme rendering technique combined with tie scrdar topology enhancement is used to produce four different
views of a 5-dimensiond scrdar field The dataset is the interaction potentird of a receptor protein with respect to a figand

)
I

molmde for any independent protein translation rdong the X,Y,Z axes and rotation around the X and Y axes (assuming ,.

rough symmetry of tie figand with resp=t to tie Z axis). The transfer function of the hypervolume is modtiated to enhance
in r~ regions of action of tie figand towards the r~eptor, and in blue, regions of high repulsion (interior of the rwep-
tor). Green regions show configurations of free movement The scalar topology enhances the existence of short steepest
descent paths horn tigh attraction to high reptilon regions that might be favorable for the dochg of the two molecdes.

Referen= ‘Wypervolnme Vlsu&ation: a ~~enge in Sirnpfici~V C. Bajaj, V. Pascucci, G. Rabbiolo, D. ScWore, pp.
95-102. I .,

Bottom:

hk Separate interpolation of color and opacity. Middti Opacity-weighted interpolation of colors. Righti Normfized dif-
ference image. Data courtesy of DL Rarnani Hchnrnani, Stanford University.

,-

1

Reference “Opacity-Weighted Color hterpolation for Volume Sarnpkg~’ Craig M. Wlttenb& Thomas Mdzbender, :“

hfichael E. Goss, pp. 135–142.
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Figure 6: CSG model from tie ongind Cons~ctive Cubes paper. Figure 8: X-29 CSG model stiace evaluation uti~iing distance
volumes.

Figure 7: bproved stiace evaluation utig distance volumes
on a stiar modeL

Figure 9: Dart CSG model sufiace evaluation uttiig distance
volumes.

3D Scan Conversion of CSG Models into Distance Volume
DmZ E. Bree?~ Sean Mauch, Ross T Whiraker

161



Coloring Voxel-Bmed ObjecG for Viid Endoscopy
OIwr Shibolet, Daniel Cohen-Or
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Using Distance Maps for Accurate Surface Rwonstruction in Sampled Volumes
Sar& E E Gibson
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Figure 14Pe~tive pmjmtion with 2 x 2 x 2 mm”olutiom Figure lZ Pe_tive pmjmtion witi 3 x 3 x 3 involution.

Figure 15: P_tive pmj=tion by mampfig the n-t neigh-
borvomh.

Figure 18P@el projwtion with 3 x 3 x 3 convolution.

Figme 16: Pen~tive proj=tion with 3 x 3 x 3 mnvolutiom
Fi~ 19: Smen-to~bj~t W-tive projwtion by interpola-
tions using mtiti-resolution datasets.

A Red-Tree Volume Rendering ~hitecture Using an Adaptive Resampling Scheme

for P@Iel and Perspective Projections
Mmato Oga@ T@tie Ohbni, Hugh C. bue~ Hanspeter Pfister
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Figure 6: .Animating the rib of a volumetric insect - Note how the left front limb folds into the body.

Fi~e Z Volumetric hsect nd its Skdeton
m*.

Figure 8: Deforming a hledicd DataSet: (a) Part
of the Human Trachea (512x512x1812 119,934
voxek) (b) tith a shq bend. The bend is

smooth d~ite the sh~ angle.

Volume &ation wing the Skeleton Tree
Ntiil Gagvan~ Dilip Kenchmmana-Hosebte, Deborah Silver
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(a) Data-setof a voxe~ geometrywithoutshadows @)Data-setof a voxetiid geome~ withshadows

F1-~e % Comparison of shadowd and unshadowed texture-based volume rendering of a geometrical data-se~ This 128x128x64 voxel sixed
data-set was generated to control the correct dctition of the shadows. me images were rendered using 256 p@el textural planes. In the
scene there is the hge red block on the top with the four sm~er green blocb below, that have different transparencies. k the shadowed
image you m how the dtierent .~een blocks cast different shadows on the ground and how the shadow of the red block appears different on
the grwn blocks. You can dso see the fake diffuse ~umination effect here, because surfaces that face away from tie fight source are darker
than others.

(a)~~ound data-setof fetusrenderd ~fiout shadows ~) Utrasounddata-setof fetusrenderedwithshadows

Fi&we & Screertshots from a volume rendering with the 128x128x64 voxel tid data-set mapped as a 3D-texture onto 256 p~lel planes.
Note, how tie shadow casts ~om the fetus’ arm onto its face. Athou@ the shadowed image looks more re-tic, there are some deti
covered by tie shadow. But the data-set can now be explored by interachvely moving the fight source, so details wi~ be revealed that cannot
be seen h the mhadowcd image.

Adding Shadows to a Texture-Based Volutne Renderer
U~ve Behrem, Ra~Ratering

165
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Fi~e lk Rendering the test volume with (a) ER-Perspective with Bartlett filter and (b) Novins et al.
algotithm with a box $lter. There is slight, but noticeable, reduced aliasing for the Bartlett filter.

Fi~e ~k Comparison of perspmtive volume rendering methods. tiws are diflerent methods: (a) Under-

sampling, (b) ER-Persp~tive, (c] Oversampling. Column J is a Lateral Geniculate Nucleus (L GN) neuron.
Columns 1 through .3 are our 2563 test volume with different configuration parameters: (1) A volume with
3“ ch=kered subblocb, the eyepoint is at (128,128,-128) rendererd with a 90 deg field-of-view. (2) A vol-
ume with 52 subbloch rendered from (128,128,-64) with a 127 deg field-of-view. (3) Also a volume with 53
sub blocks although it is renderd from (128,128,-128) with a 90 deg field-of-view.

Atiptive Pempative Wy C=bg

Kevin Kreegeg Ing&rBiEez Frh Dachille, Baoquan ~efi Ane Kau~n
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Figure 10c. Images obtained from a til navigation inside human nasal cavity. The
images in the top row are rendered with conventional splating algorithm. The images in
the bottom row are medered using our new algorithm for edge preservation.

*

Figure 1lc. kages acquired from a navigation through the Hipip dataset (w x 64 x M ). We
fist threshold the datiset and get tie iso-contour with values between 0.0017 and 0.5; then
render with the splatting approach. The top row corresponds to the conventional splatting,
the bottom row images are results of our new algorithm for edge preservation.

Edge fiesemation in Volwe Rendefig Using Splatting
Jht Hmg, Roger Cr@s, Don Stredn~

16S
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fig. 3. Rendered images of the sloth CT volume
witi SOM-PNN segmentation.

Fig. 4. Rendered images of the sloth CT volume
with ML segmentation.

Fig. 5. Rendered images of the sloth CT volume
with PNN segmentation.

Fig. 6. Rendered images of the sloth CT volume
with SOM segmentation.

Fig. 8. Coronally clipped views of the MRI brain case 112_2 with manual segmentation,
SOM-PNN, ML, PNN and SOM segmentations respectively.

*
.

Probabihshc Se=mentition of Volme Daa for Vlsutimtion Using SOM-P~ Classifier
Feng M4 flknping Wbng, lVaiWm Tsang, 2sheng Tang, Shaowei Xja
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L
Figure 12 Andysk of a magnetic resonanu image of a portion of the brain. On the left is a smtte~lot of data Mue and wadient ma~nitud~
no clear boun~es are evidenti h the rnidde is an automati@y generated opacity function o~data tiue, and on th;left is the rendered“,

image. me god of the vis-tion was to find the aneurysm, it is the large round shape visible in the lower hti of the image.

Figure 13: Renderings of the f~t in tie female Vible Human datase~ Wt in each rendered image is the two-dimensiond opacity function
used 10 generate iL At tie upper-left is the initi automatictiy generati opatity function and rendering. Editing out a smti region of
opatity at low data vrdueand low gradient magnitude removed tie surrounding material from the rendering (upper-right), Careful selwtion in
the optity function Wows imaging of tie registion cord ~ower-left). Fiitiy, the bon~ are visu~d by selwting the right-most portion
of tie opatity function flower-right).

Semi-Automatic Generation of Tmsfer Functions for Direct Volume Rendering
Gor&n Kiltilman~ James ~%Durtin
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Fi=me 5: Image computi \titi MVO of a 13,~mll complex.

& Exact kteractive Tme Vlsibfiw Ordering Agonthm for Polyhedrrd Cell Complexes
Cfitiw T SilvG Joseph S. B. Mitchell, Peter L. Wlliam
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Hypervolume Vlsu&zahon: a Chdenge in Simplicity
C. Bajaj, V Pascucci, G. Rabbiolo, D. Schibre

Figure 1: 5D interaction energy wdar field ~d~tion, Blu~eptision, &een=fiee movement). me aes cotiguration
is reported on &e bottom left (tie stretchti tis corresponds to a rotational degrm of fr~om).

Fignre25D int~tion energy stiar field Redaction, Blu=eptision, Green=frm movement). Same view as is figure 1
but hig~ghting otiy some of the energy components.

Figure 3: 5D interaction energy scrdar fieId @d~tion, Blu~eptision, &een=fiee movement). Same scalar field as in
figure 1 but from a tierent view.

●
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Weigle and Banks, “Mracting Iso-valued Features in 4-dimensional
Scalar Fields”

CCW from upper-left. Figure 3. portion of an isovolume (wire frame)
with an isosurface inside; volume swept by time-varying isosurface.
Figure 4. Sphere-shaped isosurfaces sweeping a volume; the vol-
ume’s envelope; dipole-antenna’s envelope of iso field-strength. Fig-
ure 6. Blobby objects in higher dimensions projecting as inter-
penetrating objects. Figure 7. A family of isosurfaces at different res-
olutions within a single volumetric representation of a torus.
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0
{a)

“-

6 ;0 1;0 2$0 3;0

@)

180-

go.

o

(c)

Figure 3: ~eti,meti error esdmatwn of tb su~ue normal (in
&grees) as afim-$wn of a sphereparametrization for (a] a Gaus-
sian @er wtih u = 1; (b) oriented box @er (r ~ = 1.8) wilh
floatpreciswn: and(c) same as (b) with msi~ed chupre-
Ciswz

(a) (b)

(c) (d)

Flgu 10: “Shapening” of edges with increasedraster resolution:
[a) 643, (b) 12S’, (c) 2563, (d) 5123.

(a) (b)

(c) (d)

Figwe 11: Voxelized parametric objects: (a) Monge patch, (b)
Moebius strip, (c) ell~so~ (d) Bezierpatches.

Objwt Voxefization by Faltering

Mitis jrtie~ An.e Kautn
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Fi~e 15.&sepmting voxe~tion of Bowl (n@t), BRvi (Iefi), md Gmsmtor (middle).

An Accu& Metiod To Voxefize Polygonal Meshes
Jian Huang, Roni YageL Vassily Filippox Yair Kunion
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@) (c) (d)

Fi~e 10: hage re~ts oftest fanctiom (a) Linear @) Adaptive T-O, T~=2 (c) Adaptive TwO, T~=O(d) Sp~ie.

(a)

(c)

@)

(d)

Fi~e 11: hage re~ts of a bolt data set (direct volme rendering tied ~viti isotiaces) (a) Linear @) Adaptivt
T~20, TL=15 (c) Adaptive T~O, T~=O(d) Spke.

Wavelet Based Adaptive hterpolation For Volue Rendering
Ricardo S&chez Marcelo Camajal
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Fi~re S. bk -acts of separate interpolation of wlors and opacity. Kght bproved using opacity-weightd color interpolation.

F@re 9. bk Separate interpoktion of color and opacity. Mtie Opaci&-weighted interpolation of mlors. Mght Normtied
~mence me. Data courtesy of ~. ~ ~chd Stiord University.

F@re 10. mm testTen- scenarios mmer, ~% and phase. One plane of tbe rnaterird boundaries h ~ antidiased during
fomati~ by tig a windowed sine interpolatim

--’.

F@re 11.bft four imag= fiorn leg i) Watts of separate interpolation of mlors, ii) opaci&-weight@ iii) difference, iv) q~ed
~aence. ~B %or 39.0. Nght four imag= same view and differences of antitiased face. ~ Error 17.7.

I
-=-----.=;;==--- --%=-=.<— ----?-..~~y~y =’--–

‘r $%?= ---

Fi~re IZ hft four imag~ from le% i) Hacts of sepamte interpolation of colors, ii) opacity-weigh~ iii) ~~enm, iv) q-
~mence. ~B hr 20.3. ~ght four imag= same view and differences of antitiased face. M Error 8.32

Opacity-JVeightti Color hterpolation for Volume Sampling
Craig M. l~~enbn~ ~om Malzbetie~ Michael E. Goss

177

.—. .——c —— _____ ———— ,,-,...



—— —. .:.”.-.<-: _——-— ..—

(a)

(c)

FIGURE 2. Llarschner Lobb data set rendered using the follo\ving derivative filter (a)
discontinuous lEF (b) discontinuous 3EF (c) &-lEF (d) @-3EF (e) &4EF

(a)

(c)

(b)

(d)

(b)

(

(a)

(b)

(c)

FIGURE 5. Size preserving pattern mapping of
a texture on an MRI scan of a human head
using (a) a discontinuous 1EF derivative
filter (central differences) (b) a ~’-2EF
derivative filter (c) a C’-2EF derivative fil-
ter in order to determine the pattern densi~.

(d)

FIGURE 4. NIM data set rendered using the follo~vingderivative filter(a) discontin-
uous lEF (b) discontinuous 3EF (c) ~-l EF (d) &-3EF

Design of Accurate And Smooti Filters For Function And Derivative Reconstruction
Torsten hlollec Kkm hluellec Yair Kuziow Raghu Machiraju, Roni Yagel
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